Treatment Effect Heterogeneity Trees

Julian Wolfson, Ph.D.
(joint work w/ Lauren Erickson, M.S.)

Division of Biostatistics, School of Public Health
University of Minnesota

JSM — Chicago, IL
July 31, 2016
Treatment effect heterogeneity

- In the era of “personalized” medicine, there is much interest in identifying subgroups where treatment is particularly beneficial/harmful.
- For continuous outcome Y and covariates X, we seek to describe how

$$E(Y(1) - Y(0) \mid X)$$

varies with X, where $Y(Z)$ is the counterfactual outcome under treatment Z.
Treatment effect heterogeneity

- In a randomized trial, under mild assumptions

\[E(Y(1) - Y(0) \mid X) = E(Y \mid Z = 1, X) - E(Y \mid Z = 0, X) \]

hence we can identify the quantity of interest.

- The standard approach to looking for effect modification is to fit a regression model with interactions:

\[E(Y \mid Z, X) = \beta_0 + \beta_1 Z + \beta_2 X + \beta_3 X \cdot Z \]
Treatment effect heterogeneity

\[E(Y \mid Z, X) = \beta_0 + \beta_1 Z + \beta_2 X + \beta_3 X \cdot Z \]

- For continuous covariates \(X \), this does not identify subgroups
- Higher-order synergistic effects are missed unless pre-specified
- Type I error \(P(\text{reject } H_0 : \beta_3 = 0) \) is controlled when there is no treatment effect heterogeneity
Our goal

Develop a method which:

1. Discovers population subgroups experiencing differential causal treatment effects
2. Protects Type I error
Our proposal, **Treatment Effect Heterogeneity Trees (TEHTrees)**, combines *matching* and *decision trees*:

1. Match (with replacement) on the *prognostic score* estimated by *SuperLearner*
2. Calculate the within-pair differences in the outcome
3. Fit *conditional inference tree* with *linear mixed models* to identify distinct subgroups
Not typically considered in randomized trials, since by design $Z \perp X$, but...

- Consider forming a matched pair of subjects i and j with
 - $Z_i = 1, Z_j = 0$
 - $X_i = X_j = X$ ("perfect" matching)
- Within-pair differences $Y_i - Y_j$ have expectation

$$E(Y_i - Y_j \mid Z_i = 1, Z_j = 0, X_i = X_j = X) = E(Y(1) - Y(0) \mid X)$$

so these matched pairs can be used to understand effect heterogeneity.
Matching

- Exact matching is generally not possible
- Since treatment is randomized, *propensity score* is unhelpful

Instead, match on the *prognostic score* (Hansen, 2008)

\[\Psi(X) = E(Y \mid X) \]
The prognostic score has the balancing property

\[Y \perp X \mid \Psi(X) \]

This can be used to show that within-pair differences for pairs matched on \(\Psi(X) \) are independent of all components of \(X \) which do not modify the effect of \(X \)
Good behavior of the prognostic score requires that model for Ψ be correctly specified.

Since we don’t know the right model, we use *SuperLearner* (Polley et al., 2007):
- Ensemble-based method
- Weights of base learners calculated to minimize prediction error

Our current implementation uses SuperLearner with 7 base learners (GLM, random forest, GAM, MARS, etc.)
Goal: Model within-pair differences as a function of covariates to find subgroups experiencing different treatment effects
Regression trees

The diagram illustrates a decision tree with the following structure:

- **Root Node**: Hunger < 1.8
 - **Yes**: Wanting < -0.57
 - **Rest.eat >= 1.2**
 - -1, n=15
 - **Rest.eat < 1.2**
 - -0.41, n=50
 - **No**: Wanting >= -0.57
 - **Rrvf < -1.1**
 - -0.42, n=21
 - **Rrvf >= -1.1**
 - **Rest.eat >= 0.51**
 - -0.19, n=35
 - **Rest.eat < 0.51**
 - 0.36, n=91

The tree is used to make decisions based on the values of Hunger, Wanting, and Rest.eat.
Conditional inference trees

Most popular approach (CART) does not explicitly control Type I error since:

- Splits are chosen greedily across variables and split points
- Matching with replacement induces correlation between pairs

So instead, we use **conditional inference trees** (Hothorn et al., 2006)
Key feature: Splits are determined from multiplicity-adjusted p-values from univariate regressions
To account for between-pair correlation, our adaptation of conditional inference trees calculates these p-values from **linear mixed effects models** with a random subject-specific intercept.
To account for between-pair correlation, our adaptation of conditional inference trees calculates these p-values from linear mixed effects models with a random subject-specific intercept.

To recap:

1. Match (with replacement) on the *prognostic score* estimated by *SuperLearner*
2. Calculate the within-pair differences in the outcome
3. Fit a *conditional inference tree* with *linear mixed models* to identify distinct subgroups
Simulations - Type I error

We generated data from the model

\[Y = Z + \sum_{j=1}^{5} \beta_j X_j + \theta f(X) \]

for various choices of \(\theta \) and \(f \):

- \(\theta = 0 \) (Base model)
- \(\theta \neq 0, \ f(X) = X_1 \cdot X_2 \)
- \(\theta \neq 0, \ f(X) = \sqrt{|X_3|} \)
- \(\theta \neq 0, \ f(X) = I(X_4 > 0) \)
Simulations - Type I error

Type I error = any split in conditional inference tree

<table>
<thead>
<tr>
<th>Model</th>
<th>Type I error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base model</td>
<td>0.026</td>
</tr>
<tr>
<td>Base model + $X_1 \cdot X_2$</td>
<td>0.012</td>
</tr>
<tr>
<td>Base model + $\sqrt{</td>
<td>X_3</td>
</tr>
<tr>
<td>Base model + $I(X_4 > 0)$</td>
<td>0.044</td>
</tr>
<tr>
<td>Base model + all above</td>
<td>0.048</td>
</tr>
</tbody>
</table>
Data generated from

\[Y = Z + \sum_{j=1}^{5} \beta_j X_j + \tau Z \cdot g(X) \]

with \(\tau \neq 0 \) and

- \(g(X) = X_1 \) (continuous interaction)
- \(g(X) = I(X_1 > 0) \) (threshold)
- \(g(X) = X_1 + I(X_1 > 0) + I(X_3 > -1, X_4 < 1) \) (combined)
Simulations - Power

Figure: Distribution of first split for three simulation scenarios
• TEHTrees provide a general-purpose framework for detecting heterogeneous causal effects while controlling Type I error.

• Lots of flexibility to choose:
 • Matching procedure
 • Modeling method for prognostic score
 • Partitioning procedure